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0 Introduction

Suppose that X is the canonical model of a surface of general type with
py = 0, K? = 1; assume that X has an even set {Py,..., P;} of 4 nodes, and
hence a double cover Y — X ramified in just these 4 nodes. Then Y has
py =0, K2 =2, and hence |m;Y| <9, but a priori one does not know what
m will be.

Let FF — Y be the universal cover of Y; then F' — X is Galois with
group G, and mY <G has G/mY = 7Z/2. Since X has only nodes, the
elements of G' that have fixed points on F' are necessarily involutions; call
these the elliptic elements. They generate a normal subgroup F < G, and
mX =G/E.

If m X = {0}, Barlow [B] uses a straightforward group theoretic argum-
net to show that |m1Y| cannot be even. This leaves the possibilities {0},
Z/3, Z/5, Z)7 or |mY| = 9. The last two cases seem rather implausible,
but one guesses that the first 3 cases could occur.

Barlow then shows that mY = Z/5 can occur (see [B1]). For this she
needs to construct a (nonsingular, simply connected) surface F' with p, = 4,
K? =10, and an action on F of the dihedral group Djg, in such a way that
the normal subgroup Z/5 C Djg acts freely, and each of the 5 conjugate
involutions of D has just 4 isolated fixed points. One checks at once that
the quotient X = F//Djj has the required properties.

Barlow’s construction leads to a family of examples (apparently) de-
pending on 4 moduli. I give here a particular example, based on a surface F’
having an action of Z/2 x G5 that has already been considered in detail in
the literature; see especially [C]. T am endebted to Derek Holt for the advice
to exorcise the Young tableaux from [C], and for the superior description of



the representation W in Section 3, which leads to a considerable tidying up
of the construction in [C].

1 The surface F' and its canonical ring

Let F' be a surface with p, =4, ¢ =0, K? =10, for which px: F — Q C P3
is a double cover of a quintic, ramified in just 20 nodes of (). The double
cover I' — @ has a covering involution i: F — F' that acts on the canonical
ring R = @, H*(Or(nKF)), decomposing it as the sum of Rt = R(Q)
and R~. According to [C, Theorem 3.3], on choosing a basis

Ti,...,24 € Ry and yi1,...,y5 € Ry,

we get R = k[z1,...,24,91,...,Y5]/I, where the ideal I of relations can be
described in terms of a symmetric 5 X 5 matrix A with entries linear forms
in the ;. Thus I is generated by

in degree 3, ) Ay, (5 values of 7)
in degree 4,  y;y; — Bjj (15 values of (i7)),

where B;; is the 7jth 4 x 4 minor of A. Note that I automatically contains
det A, Biry; — Bjryi, etc. The quintic Q C P3 is defined by det A, and
F = Proj R is a double cover F' — ). Thus F' is nonsingular, and F' — @
ramified in just 20 nodes of ) for general values of the entries of A.

2 A group action on F

If a finite group G acts on F then it will act on any vector space canonically
associated with F'; in particular, G will have a representation r1 on Ry, ro
on R, , and r3 on

ker{R1 ® Ry, — R3},

which is the 5-dimensional vector space based by the 5 relations ) A;;y;.
The final representation r3 is given as follows: if g € G acts on the relation
> Ajjy; we get a new relation

Zrl (9)(Aij) - r2(9)yys

(recall that A;; is a linear form in the z;). This is a new relation between
the elements z;y; € Ry, so is a linear combination of the ) A;;y;:

> ri(9)(Ay) - r2(9)y; = r3(9) (Z Aijyj> :
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In matrix terms
r3(g) "' - 11(9)(A) - 2(g) = A. (*)

In practice one can usually predict in advance the representation r1,r2, 73 by
character theory; for the matrix A to be symmetric we have to coordinate
our choice of bases in R, and ker, and for this to work, it is highly desirable
that r3 = tr2_1.

The next two sections show how to pick r1,r2,73 and A to satisfy (x).

3 Irreducible 4 and 5-dimensional representations
of 65

The following result is well known:

Proposition Suppose that a group G acts doubly transitively on a finite
set T'; then the permutation representation ), . k-T decomposes as I © U,
where I is the trivial 1-dimensional representation spanned by > t, and U
15 irreducible.

Applying this to G = &5, T = {1,2,3,4,5} we get a 4-dimensional
representation V' with spanning set x1,...,zs subject to the single relation

Z €Tr; — 0.
G5 also acts by conjugation on the set consisting of its 6 subgroups of
order 5:

Ho = ((12345)), Hy = ((12543)), Hy = ((12534)),
Hy = ((12435)), Hs = ((12354)), Hj4 = ((12453));

the subscripts are to be thought of as points o € P*(F5), and the action gives
the sporadic isomorphism S5 = PGL(2,F5). One checks that on generators

(12345) : a— a+1,
(12) : a— 2/a.

We thus get an irreducible 5-dimensional representation W of &5, with
spanning set Yoo, Y0, - - - , Y4 sSubject to the single relation )y, = 0.



4 An invariant element of V & S2W

Character theory implies that the trivial representation of &5 appears just
once in V ® S2W. One can check directly that the following element is
invariant under Gs:

? = 21(yoys + Y193 + Y2Yoo) + Z2(Yoy1 + Y2Ys + Y3Yoo)
+ 23(yYoys + Y1¥2 + YaYoo) + Ta(Y0Yoo + Y194 + Y2y3)
+ 25(YoY2 + Y1Yoo + Y3Ya).

Alternatively, the invariance can be proved without any computation, as
follows: every subgroup H, C Hjs of order 5 is contained in a unique conju-
gate D, of Do = ((12345), (25)(34)). Any two distinct D, and Dg contain
a unique conjugate of (25)(34); finally, the monomial x;y,yg occurs in ¢ if
and only if (jk)(Im) € Do N Dg, where {i,7,k,I,m} is a permutation of
{1,2,3,4,5}.

This element can be written

0 z0 x5 3 1 x4
g = (y07"'7y47y00) 0

r3 IT1 T4 Is Yo
0 X4 T2 Tq :
0 75 | \ywo
0
Setting yoo = — Zizo Yo, this becomes
1
L = (y07"'7y4) 1 -1 Yo
. . (same .
matrix) 1 :
1 -1
S I | Ya

= (yo,.--,ya)A [Y0

Ya



where

—2%4 Tog — 5 — X4 X5 — X1 — T4 I3 — T2 — T4 X1 — X3 — T4

—2x5 T3 — X1 —T5 L1 —To— X5 T4— XT3 — Th
—2.%1 Ty — T3 — X1 X9 — X3 — T
sym —2x9 T5 — XT3 — T9
y
—2$3

By construction, this matrix has the covariance

'ra(g) - m1(9)(A) -m2(g) = A for g € &, (xx)

where 71(g) acts on V' by permuting the z; and r2(g) acts on W by permuting
the yo. In terms of the basis {yo,...,ys} of W, ra is the representation

-1 -1 -1 -1 -1
0 1
, ra(12) = 1 0

0 1
0 1
ro(12345) = 01
01
1 0 1 0

5 The quintic @)

Because of the covariance (xx), det A is a quintic symmetric in the z;. It
follows from the theory of elementary symmetric functions that det A =
AS5+ 152593 modulo S = 3~ x;, for some A, u € Q, where Sy, = > ¥ are the
power sums. By evaluating both sides at (2, —1,—1,0,0) and (3, -2, —1,0,0)

(say), one sees that
36

)
One can verify directly (or see [GZ, p. 104]) that det A defines a quintic Q C
P? having 20 nodes at (2,2,2, -3+ /—7,—3 — v/=7) and its &5 translates,
and no other singularities.

One also checks that the involution (25)(34) acts on () with a fixed locus
consisting of the line ¢ : 1 = z9 + x5 = x3 + ©4 = 0, together with the 5
isolated fixed points:

det A = (455 - 55253).

Ty =I5, X3 = T4, (wz + xg)(3w2 + 563)(562 + 3:63)(:6% + zox3 + x%) =0.



6 An action of Dy on F

The group Z/2 x &5 now acts on R, and hence on F': the involution i x 1
acts by
T; — I and Yi — —Y;,

whereas G5 acts by permuting the x; and y, as in Section 3. The fixed
points of any g € Z/2 x G5 acting on F' lie over the fixed points of the
second factor g» acting on Q.

Consider the subgroup D C Z/2 x S5 generated by 1 x (12345) and
i x (25)(34). Obviously, D is isomorphic to Dyg. It is easy to check that
(12345) acts freely on @ (see [C, Section 4]), so that the normal Z/5 C D
acts freely on F.

Finally, we have to check that i x (25)(34) acts on F' with just 4 fixed
points. The element (25)(34) € &5 acts on P!(F5) as a — 4 — . One checks
that over the line L : z1 + x4 = 29 + 3 = x5 = 0, the cover F' — @Q splits
into two components L1 and Lo, with

Yo = Y4 = 3:0% + 2x9x3 + 33:%,
Li: y=y3= 3323 — 2xox3 + 3.7)%,

yYs = —3m% —4xoxg + 3a:§

and Lo obtained by reversing the sign of each y,. It follows that (25)(34)
fixes each of L; and Ly pointwise, and that ¢ x (25)(34) interchanges them.

This means that our involution 7 x (25)(34) has at most 10 fixed points on
F, lying over the line m : 29 = 5,23 = x4 of P3. The reader can check as an
exercise that this is already enough to guarantee that it then has exactly 4
fixed points. Alternatively, argue as follows: over the point z1 = —2(u + v),
T9 = T5 = u, r3 = T4 = v, the matrix A becomes

—2v —w v+ 3u —u —2u — 4v
—2u u—+3v —4du-—2v —u
A|m: d(u+v) u+3v v+ 3u
(sym) —2u —v
—2v

This matrix has an unexpected symmetry about the antidiagonal. Subtract-
ing the 5th row from the 1st and the 4th row from the 2nd gives

2u+v)(yo —ya) + (u—v)(y1—ys) = O,
(u—v)(yo—ya) + 2(u+v)(y1—ys) = 0.



It follows that, on the line m and outside the zeros of the determinant
4(u 4+ v)? - (u — v)? = (3u + v)(u + 3v), the corresponding point of F
has yo = y4 and y; = y3. Therefore the inverse images of the 3 points
(u + v)(u? + uv + v?) are fixed by (25)(34) and not fixed by i x (25)(34).

It’s easy to see that the 4 inverse images of the 2 points (3u+ v)(u + 3v)
are indeed fixed by ¢ x (25)(34), and this completes the construction.
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