A simply connected surface of general type with $p_{g}=0, K^{2}=1$, due to Rebecca Barlow

(notes by M. Reid)

March 1981

0 Introduction

Suppose that X is the canonical model of a surface of general type with $p_{g}=0, K^{2}=1$; assume that X has an even set $\left\{P_{1}, \ldots, P_{4}\right\}$ of 4 nodes, and hence a double cover $Y \rightarrow X$ ramified in just these 4 nodes. Then Y has $p_{g}=0, K^{2}=2$, and hence $\left|\pi_{1} Y\right| \leq 9$, but a priori one does not know what π_{1} will be.

Let $F \rightarrow Y$ be the universal cover of Y; then $F \rightarrow X$ is Galois with group G, and $\pi_{1} Y \triangleleft G$ has $G / \pi_{1} Y \cong \mathbb{Z} / 2$. Since X has only nodes, the elements of G that have fixed points on F are necessarily involutions; call these the elliptic elements. They generate a normal subgroup $E \triangleleft G$, and $\pi_{1} X=G / E$.

If $\pi_{1} X=\{0\}$, Barlow [B] uses a straightforward group theoretic argumnet to show that $\left|\pi_{1} Y\right|$ cannot be even. This leaves the possibilities $\{0\}$, $\mathbb{Z} / 3, \mathbb{Z} / 5, \mathbb{Z} / 7$ or $\left|\pi_{1} Y\right|=9$. The last two cases seem rather implausible, but one guesses that the first 3 cases could occur.

Barlow then shows that $\pi_{1} Y=\mathbb{Z} / 5$ can occur (see [B1]). For this she needs to construct a (nonsingular, simply connected) surface F with $p_{g}=4$, $K^{2}=10$, and an action on F of the dihedral group D_{10}, in such a way that the normal subgroup $\mathbb{Z} / 5 \subset D_{10}$ acts freely, and each of the 5 conjugate involutions of D_{10} has just 4 isolated fixed points. One checks at once that the quotient $X=F / D_{10}$ has the required properties.

Barlow's construction leads to a family of examples (apparently) depending on 4 moduli. I give here a particular example, based on a surface F having an action of $\mathbb{Z} / 2 \times \mathfrak{S}_{5}$ that has already been considered in detail in the literature; see especially [C]. I am endebted to Derek Holt for the advice to exorcise the Young tableaux from [C], and for the superior description of
the representation W in Section 3, which leads to a considerable tidying up of the construction in [C].

1 The surface F and its canonical ring

Let F be a surface with $p_{g}=4, q=0, K^{2}=10$, for which $\varphi_{K}: F \rightarrow Q \subset \mathbb{P}^{3}$ is a double cover of a quintic, ramified in just 20 nodes of Q. The double cover $F \rightarrow Q$ has a covering involution $i: F \rightarrow F$ that acts on the canonical ring $R=\bigoplus_{n \geq 0} H^{0}\left(\mathcal{O}_{F}\left(n K_{F}\right)\right)$, decomposing it as the sum of $R^{+}=R(Q)$ and R^{-}. According to [C, Theorem 3.3], on choosing a basis

$$
x_{1}, \ldots, x_{4} \in R_{1} \quad \text { and } \quad y_{1}, \ldots, y_{5} \in R_{2}^{-},
$$

we get $R=k\left[x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{5}\right] / I$, where the ideal I of relations can be described in terms of a symmetric 5×5 matrix A with entries linear forms in the x_{i}. Thus I is generated by

$$
\begin{array}{lll}
\text { in degree } 3, & \sum A_{i j} y_{j} & (5 \text { values of } i) \\
\text { in degree } 4, & y_{i} y_{j}-B_{i j} & (15 \text { values of }(i j)),
\end{array}
$$

where $B_{i j}$ is the $i j$ th 4×4 minor of A. Note that I automatically contains $\operatorname{det} A, B_{i k} y_{j}-B_{j k} y_{i}$, etc. The quintic $Q \subset \mathbb{P}^{3}$ is defined by $\operatorname{det} A$, and $F=\operatorname{Proj} R$ is a double cover $F \rightarrow Q$. Thus F is nonsingular, and $F \rightarrow Q$ ramified in just 20 nodes of Q for general values of the entries of A.

2 A group action on F

If a finite group G acts on F then it will act on any vector space canonically associated with F; in particular, G will have a representation r_{1} on R_{1}, r_{2} on R_{2}^{-}, and r_{3} on

$$
\operatorname{ker}\left\{R_{1} \otimes R_{2}^{-} \rightarrow R_{3}^{-}\right\}
$$

which is the 5 -dimensional vector space based by the 5 relations $\sum A_{i j} y_{j}$. The final representation r_{3} is given as follows: if $g \in G$ acts on the relation $\sum A_{i j} y_{j}$ we get a new relation

$$
\sum r_{1}(g)\left(A_{i j}\right) \cdot r_{2}(g) y_{j} ;
$$

(recall that $A_{i j}$ is a linear form in the x_{i}). This is a new relation between the elements $x_{i} y_{j} \in R_{3}^{-}$, so is a linear combination of the $\sum A_{i j} y_{j}$:

$$
\sum r_{1}(g)\left(A_{i j}\right) \cdot r_{2}(g) y_{j}=r_{3}(g)\left(\sum A_{i j} y_{j}\right) .
$$

In matrix terms

$$
\begin{equation*}
r_{3}(g)^{-1} \cdot r_{1}(g)(A) \cdot r_{2}(g)=A \tag{*}
\end{equation*}
$$

In practice one can usually predict in advance the representation r_{1}, r_{2}, r_{3} by character theory; for the matrix A to be symmetric we have to coordinate our choice of bases in R_{2}^{-}and ker, and for this to work, it is highly desirable that $r_{3}={ }^{t} r_{2}^{-1}$.

The next two sections show how to pick r_{1}, r_{2}, r_{3} and A to satisfy $(*)$.

3 Irreducible 4 and 5-dimensional representations of \mathfrak{S}_{5}

The following result is well known:

Proposition Suppose that a group G acts doubly transitively on a finite set T; then the permutation representation $\sum_{t \in T} k \cdot T$ decomposes as $I \oplus U$, where I is the trivial 1-dimensional representation spanned by $\sum t$, and U is irreducible.

Applying this to $G=\mathfrak{S}_{5}, T=\{1,2,3,4,5\}$ we get a 4-dimensional representation V with spanning set x_{1}, \ldots, x_{5} subject to the single relation $\sum x_{i}=0$.
\mathfrak{S}_{5} also acts by conjugation on the set consisting of its 6 subgroups of order 5:

$$
\begin{array}{lll}
H_{\infty}=\langle(12345)\rangle, & H_{0}=\langle(12543)\rangle, & H_{1}=\langle(12534)\rangle \\
H_{2}=\langle(12435)\rangle, & H_{3}=\langle(12354)\rangle, & H_{4}=\langle(12453)\rangle
\end{array}
$$

the subscripts are to be thought of as points $\alpha \in \mathbb{P}^{1}\left(\mathbb{F}_{5}\right)$, and the action gives the sporadic isomorphism $\mathfrak{S}_{5} \cong \operatorname{PGL}\left(2, \mathbb{F}_{5}\right)$. One checks that on generators

$$
\begin{aligned}
(12345): & \alpha \mapsto \alpha+1 \\
(12): & \alpha \mapsto 2 / \alpha
\end{aligned}
$$

We thus get an irreducible 5 -dimensional representation W of \mathfrak{S}_{5}, with spanning set $y_{\infty}, y_{0}, \ldots, y_{4}$ subject to the single relation $\sum y_{\alpha}=0$.

4 An invariant element of $V \otimes S^{2} W$

Character theory implies that the trivial representation of \mathfrak{S}_{5} appears just once in $V \otimes S^{2} W$. One can check directly that the following element is invariant under \mathfrak{S}_{5} :

$$
\begin{aligned}
\ell=x_{1} & \left(y_{0} y_{4}+y_{1} y_{3}+y_{2} y_{\infty}\right)+x_{2}\left(y_{0} y_{1}+y_{2} y_{4}+y_{3} y_{\infty}\right) \\
& +x_{3}\left(y_{0} y_{3}+y_{1} y_{2}+y_{4} y_{\infty}\right)+x_{4}\left(y_{0} y_{\infty}+y_{1} y_{4}+y_{2} y_{3}\right) \\
& +x_{5}\left(y_{0} y_{2}+y_{1} y_{\infty}+y_{3} y_{4}\right) .
\end{aligned}
$$

Alternatively, the invariance can be proved without any computation, as follows: every subgroup $H_{\alpha} \subset H_{5}$ of order 5 is contained in a unique conjugate D_{α} of $D_{10}=\langle(12345),(25)(34)\rangle$. Any two distinct D_{α} and D_{β} contain a unique conjugate of $(25)(34)$; finally, the monomial $x_{i} y_{\alpha} y_{\beta}$ occurs in ℓ if and only if $(j k)(l m) \in D_{\alpha} \cap D_{\beta}$, where $\{i, j, k, l, m\}$ is a permutation of $\{1,2,3,4,5\}$.

This element can be written

$$
\ell=\left(y_{0}, \ldots, y_{4}, y_{\infty}\right)\left(\begin{array}{cccccc}
0 & x_{2} & x_{5} & x_{3} & x_{1} & x_{4} \\
& 0 & x_{3} & x_{1} & x_{4} & x_{5} \\
& & 0 & x_{4} & x_{2} & x_{1} \\
& (\mathrm{sym}) & 0 & x_{5} & x_{2} \\
& & & & 0 & x_{3} \\
& & & & & 0
\end{array}\right)\left(\begin{array}{c}
y_{0} \\
\vdots \\
y_{4} \\
y_{\infty}
\end{array}\right)
$$

Setting $y_{\infty}=-\sum_{\alpha=0}^{4} y_{\alpha}$, this becomes

$$
\begin{aligned}
\ell & =\left(y_{0}, \ldots, y_{4}\right)\left(\begin{array}{cccc}
1 & & & -1 \\
& \ddots & & \vdots \\
& & 1 & -1
\end{array}\right)\binom{(\text { same }}{\text { matrix })}\left(\begin{array}{ccc}
1 & & \\
& \ddots & \\
& & 1 \\
-1 & \cdots & -1
\end{array}\right)\left(\begin{array}{c}
y_{0} \\
\vdots \\
y_{4}
\end{array}\right) \\
& =\left(y_{0}, \ldots, y_{4}\right) A\left(\begin{array}{c}
y_{0} \\
\vdots \\
y_{4}
\end{array}\right)
\end{aligned}
$$

where

$$
\left(\begin{array}{ccccc}
-2 x_{4} & x_{2}-x_{5}-x_{4} & x_{5}-x_{1}-x_{4} & x_{3}-x_{2}-x_{4} & x_{1}-x_{3}-x_{4} \\
& -2 x_{5} & x_{3}-x_{1}-x_{5} & x_{1}-x_{2}-x_{5} & x_{4}-x_{3}-x_{5} \\
& & -2 x_{1} & x_{4}-x_{2}-x_{1} & x_{2}-x_{3}-x_{1} \\
& (\mathrm{sym}) & & -2 x_{2} & x_{5}-x_{3}-x_{2} \\
& & & -2 x_{3}
\end{array}\right)
$$

By construction, this matrix has the covariance

$$
\begin{equation*}
{ }^{t} r_{2}(g) \cdot r_{1}(g)(A) \cdot r_{2}(g)=A \quad \text { for } g \in \mathfrak{S}_{5} \tag{**}
\end{equation*}
$$

where $r_{1}(g)$ acts on V by permuting the x_{i} and $r_{2}(g)$ acts on W by permuting the y_{α}. In terms of the basis $\left\{y_{0}, \ldots, y_{4}\right\}$ of W, r_{2} is the representation

$$
r_{2}(12345)=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & 1 & & \\
& & 0 & 1 & \\
& & & 0 & 1 \\
1 & & & & 0
\end{array}\right), \quad r_{2}(12)=\left(\begin{array}{ccccc}
-1 & -1 & -1 & -1 & -1 \\
& 0 & 1 & & \\
& 1 & 0 & & \\
& & & 0 & 1 \\
& & & 1 & 0
\end{array}\right)
$$

5 The quintic Q

Because of the covariance $(* *)$, $\operatorname{det} A$ is a quintic symmetric in the x_{i}. It follows from the theory of elementary symmetric functions that $\operatorname{det} A=$ $\lambda S_{5}+\mu S_{2} S_{3}$ modulo $S_{1}=\sum x_{i}$, for some $\lambda, \mu \in \mathbb{Q}$, where $S_{k}=\sum x_{i}^{k}$ are the power sums. By evaluating both sides at $(2,-1,-1,0,0)$ and $(3,-2,-1,0,0)$ (say), one sees that

$$
\operatorname{det} A=\frac{36}{5}\left(4 S_{5}-5 S_{2} S_{3}\right)
$$

One can verify directly (or see [GZ, p. 104]) that $\operatorname{det} A$ defines a quintic $Q \subset$ \mathbb{P}^{3} having 20 nodes at $(2,2,2,-3+\sqrt{-7},-3-\sqrt{-7})$ and its \mathfrak{S}_{5} translates, and no other singularities.

One also checks that the involution (25)(34) acts on Q with a fixed locus consisting of the line $\ell: x_{1}=x_{2}+x_{5}=x_{3}+x_{4}=0$, together with the 5 isolated fixed points:

$$
x_{2}=x_{5}, \quad x_{3}=x_{4}, \quad\left(x_{2}+x_{3}\right)\left(3 x_{2}+x_{3}\right)\left(x_{2}+3 x_{3}\right)\left(x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}\right)=0
$$

6 An action of D_{10} on F

The group $\mathbb{Z} / 2 \times \mathfrak{S}_{5}$ now acts on R, and hence on F : the involution $i \times 1$ acts by

$$
x_{i} \mapsto x_{i} \quad \text { and } \quad y_{i} \mapsto-y_{i},
$$

whereas \mathfrak{S}_{5} acts by permuting the x_{i} and y_{α} as in Section 3. The fixed points of any $g \in \mathbb{Z} / 2 \times \mathfrak{S}_{5}$ acting on F lie over the fixed points of the second factor g_{2} acting on Q.

Consider the subgroup $D \subset \mathbb{Z} / 2 \times \mathfrak{S}_{5}$ generated by $1 \times(12345)$ and $i \times(25)(34)$. Obviously, D is isomorphic to D_{10}. It is easy to check that (12345) acts freely on Q (see [C, Section 4]), so that the normal $\mathbb{Z} / 5 \subset D$ acts freely on F.

Finally, we have to check that $i \times(25)(34)$ acts on F with just 4 fixed points. The element $(25)(34) \in \mathfrak{S}_{5}$ acts on $\mathbb{P}^{1}\left(\mathbb{F}_{5}\right)$ as $\alpha \mapsto 4-\alpha$. One checks that over the line $L: x_{1}+x_{4}=x_{2}+x_{3}=x_{5}=0$, the cover $F \rightarrow Q$ splits into two components L_{1} and L_{2}, with

$$
\begin{aligned}
& y_{0}=y_{4}=3 x_{2}^{2}+2 x_{2} x_{3}+3 x_{3}^{2}, \\
L_{1}: \quad & y_{1}=y_{3}=3 x_{2}^{2}-2 x_{2} x_{3}+3 x_{3}^{2}, \\
& y_{5}=-3 x_{2}^{2}-4 x_{2} x_{3}+3 x_{3}^{2}
\end{aligned}
$$

and L_{2} obtained by reversing the sign of each y_{α}. It follows that (25)(34) fixes each of L_{1} and L_{2} pointwise, and that $i \times(25)(34)$ interchanges them.

This means that our involution $i \times(25)(34)$ has at most 10 fixed points on F, lying over the line $m: x_{2}=x_{5}, x_{3}=x_{4}$ of \mathbb{P}^{3}. The reader can check as an exercise that this is already enough to guarantee that it then has exactly 4 fixed points. Alternatively, argue as follows: over the point $x_{1}=-2(u+v)$, $x_{2}=x_{5}=u, x_{3}=x_{4}=v$, the matrix A becomes

$$
A_{\mid m}=\left(\begin{array}{cccc}
-2 v & -v & v+3 u & -u \\
& -2 u & u+3 v & -4 u-2 v \\
& 4(u+v) & u+3 v & v+3 u \\
& (\operatorname{sym}) & -2 u & -v \\
& & & -2 v
\end{array}\right)
$$

This matrix has an unexpected symmetry about the antidiagonal. Subtracting the 5 th row from the 1 st and the 4 th row from the 2 nd gives

$$
\begin{aligned}
2(u+v)\left(y_{0}-y_{4}\right) & +(u-v)\left(y_{1}-y_{3}\right)
\end{aligned}=0, ~(u)\left(y_{0}-y_{4}\right) \quad+2(u+v)\left(y_{1}-y_{3}\right)=0 .
$$

It follows that, on the line m and outside the zeros of the determinant $4(u+v)^{2}-(u-v)^{2}=(3 u+v)(u+3 v)$, the corresponding point of F has $y_{0}=y_{4}$ and $y_{1}=y_{3}$. Therefore the inverse images of the 3 points $(u+v)\left(u^{2}+u v+v^{2}\right)$ are fixed by (25)(34) and not fixed by $i \times(25)(34)$.

It's easy to see that the 4 inverse images of the 2 points $(3 u+v)(u+3 v)$ are indeed fixed by $i \times(25)(34)$, and this completes the construction.

References

[B] Rebecca Barlow, Some new surfaces with $p_{g}=0$, Univ. of Warwick Ph.D. thesis, Sep. 1982, $90+$ vii pp.
[B1] Rebecca Barlow, A simply connected surface of general type with $p_{g}=$ 0, Invent. Math. 79 (1985) 293-301
[B2] Rebecca Barlow, Some new surfaces with $p_{g}=0$, Duke Math. J. 51 (1984) 889-904
[B3] Rebecca Barlow, Rational equivalence of zero cycles for some more surfaces with $p_{g}=0$, Invent. Math. 79 (1985) 303-308
[B4] Rebecca Barlow, Complete intersections and rational equivalence, Manuscripta Math. 90 (1996) 155-174
[B5] Rebecca Barlow, Zero-cycles on Mumford's surface, Math. Proc. Cambridge Philos. Soc. 126 (1999) 505-510
[C] Fabrizio Catanese, Babbage's conjecture, contact of surfaces, symmetric determinantal varieties and applications, Invent. Math. 63 (1981) 433-465
[GZ] G. van der Geer and D. Zagier, The Hilbert modular group for the field $\mathbb{Q}(\sqrt{ } 13)$, Invent. Math. 42 (1977) 93-133

Miles Reid,
Math Inst., Univ. of Warwick, Coventry CV4 7AL, England e-mail: miles@maths.warwick.ac.uk web: www.maths.warwick.ac.uk/~miles

