Surfaces with $p_{g}=0, K^{2}=1$

Miles Reid

The ${ }^{1}$ purpose of this article is to present a uniform way of writing down the equations defining a minimal surface X having $p_{g}=0, K^{2}=1$ and Tors $X=\mathbb{Z} / 5, \mathbb{Z} / 4$ or $\mathbb{Z} / 3$, where Tors X is the Severi torsion group of X; the method consists of writing down generators and relations for the canonical ring of the cover Y, where $\psi: Y \rightarrow X$ is the Abelian cover corresponding to Tors X. Studying the canonical ring of Y, together with the action of Gal Y / X, is equivalent to studying the ($\mathbb{Z} \oplus$ Tors X)-graded ring

$$
R\left(X, K_{X}, \text { Tors } X\right)=\bigoplus_{\substack{n \geq 0 \\ \mathfrak{a} \in \text { Tors } X}} H^{0}\left(X, n K_{X}+\mathfrak{a}\right)
$$

As a corollary of this method I prove the existence of surfaces in each class, and the fact that each class forms an irreducible moduli space.

The surfaces with Tors $X=\mathbb{Z} / 5$ are due to Godeaux, and my treatment in $\S 1$ is intended to illustrate my method in a transparent case. A surface with Tors $X=\mathbb{Z} / 4$ has been constructed independently by Miyaoka [1], who also proved the irreducibility of the moduli space of Godeaux surfaces. The bulk of this paper (§3) is devoted to surfaces with Tors $X=\mathbb{Z} / 3$, for which the cover Y cannot be represented as a (weighted) complete intersection.

I have an argument based on writing down generators and relations of the canonical ring which I hope will prove that surfaces with $p_{g}=0, K^{2}=1$ and Tors $X=\mathbb{Z} / 2$ form an irreducible moduli space. That such surfaces exist is shown by a recent example of a double plane due to Oort and Peters. ${ }^{2}$

The most interesting problem remaining is that of knowing whether there exist surfaces with $K^{2}=1, p_{g}=0$ and no torsion.

[^0]Conventions All varieties, morphisms, etc. in this article are defined over a fixed algebraically closed field of characteristic 0 . By "surface" I mean a complete nonsingular algebraic surface X, and for such a surface, K_{X} denotes the divisor class associated to the invertible sheaf Ω_{X}^{2} of regular 2-forms, and $p_{g}=h^{0}\left(X, \mathcal{O}_{X}\left(K_{X}\right)\right)$ is the geometric genus. The conditions $K_{X}^{2}>0$ and Tors $X \neq 0$ together imply that X is of general type.

I would like to acknowledge financial assistance from the Royal Society, and to thank the Department of Mathematics of the University of Tokyo for excellent working facilities during the academic year 1976-77.

0 Some useful preliminaries

The following lemmas will be useful for describing the canonical system $\left|K_{Y}\right|$ of the cover $\psi: Y \rightarrow X$ of a given surface X with nontrivial torsion group. In particular I will need to show by arguing on X that $\left|K_{Y}\right|$ is without base points (or without fixed components).

Lemma 0.1 Let X be a minimal surface of general type with $K^{2}=1$, and let D and D^{\prime} be two distinct positive divisors numerically equivalent to K (so that $K D=K D^{\prime}=D^{2}=D^{\prime 2}=1$); then D and D^{\prime} are without common components, and hence intersect transversally in one point $P\left(D, D^{\prime}\right)$.

Proof Write

$$
D=C+\sum n_{i} C_{i}, \quad D^{\prime}=C^{\prime}+\sum n_{j}^{\prime} C_{j}^{\prime}
$$

with C and C^{\prime} irreducible such that $K C=K C^{\prime}=1$ and $K C_{i}=K C_{j}^{\prime}=0$.
If $C=C^{\prime}$ then $D=D^{\prime}$, since there is no nontrivial numerical relation between the C_{i} and C_{j}^{\prime} (Bombieri [2], p. 451). The intersection pairing on the C_{i} and C_{j}^{\prime} is even and negative definite, so that if the greatest common divisor E of D and D^{\prime} is nonzero then $E^{2} \leq-2$; hence $(D-E)\left(D^{\prime}-E\right)=$ $K^{2}-2 K E+E^{2}=1+E^{2}<0$, which contradicts the fact that $D-E$ and $D^{\prime}-E$ are without common components.

Lemma 0.2 Let X be a minimal surface of general type with $K^{2}=1$, and let D, D^{\prime} and $D^{\prime \prime}$ be distinct positive divisors numerically equivalent to K, and such that $D^{\prime}-D^{\prime \prime}$ is not linearly equivalent to 0 .

Then the two points of intersection $P\left(D, D^{\prime}\right)$ and $P\left(D, D^{\prime \prime}\right)$ are distinct.

Proof Let $\mathfrak{a} \in \operatorname{Pic} X$ be the class of $D^{\prime}-D^{\prime \prime}$; by hypothesis $\mathfrak{a} \neq 0$. I have to show that the restriction \mathfrak{a}_{D} is nontrivial. This follows at once from the cohomology exact sequence of

$$
0 \rightarrow \mathcal{O}_{X}(\mathfrak{a}-D) \rightarrow \mathcal{O}_{X}(\mathfrak{a}) \rightarrow \mathfrak{a}_{D} \rightarrow 0
$$

and the fact that $H^{1}\left(\mathcal{O}_{X}(\mathfrak{a}-D)\right.$) (by Ramanujam's form of Kodaira vanishing, see [5] or [6]).

Lemma 0.3 Let X be a surface with $p_{g}=0, K^{2}=1$ and let $\mathfrak{a} \in$ Tors X be a nontrivial torsion element, of order n, say. Then

$$
h^{0}\left(X, \mathcal{O}_{X}(K+\mathfrak{a})\right)=1, \quad h^{1}\left(X, \mathcal{O}_{X}(K+\mathfrak{a})\right)=0
$$

Proof From the Riemann-Roch formula and the fact that $h^{2}(K+\mathfrak{a})=$ $h^{0}(\mathfrak{a})=0$, it follows that

$$
h^{0}(K+\mathfrak{a})-h^{1}(K+\mathfrak{a})=1
$$

Now if $H^{1}\left(X, \mathcal{O}_{X}(K+\mathfrak{a})\right) \neq 0$ it follows that the étale covering $Y \rightarrow X$ corresponding to $\mathfrak{a}\left(\right.$ where $Y=\operatorname{Spec}_{X}\left(\mathcal{O}_{X} \oplus \mathcal{O}_{X}(\mathfrak{a}) \oplus \cdots \oplus \mathcal{O}_{X}((n-1) \mathfrak{a})\right)$ has $H^{1}\left(\mathcal{O}_{Y}\right) \neq 0$; thus Y has étale covers of large finite order, which gives a contradiction as in [2], p. 488.

I will use continuously the following fact:
Proposition $0.4 h^{0}(n K+\mathfrak{a})=1+\binom{n}{2}$ for all $n \geq 1$ and $\mathfrak{a} \in \operatorname{Tors} X$ with the exception of $n=1, \mathfrak{a}=0$.

1 The Godeaux surface with $p_{g}=0, K^{2}=1$ and Tors $X=\mathbb{Z} / 5$

In this section I show how to write down generators and relations for the pluricanonical ring of a Godeaux surface, starting from sections of the line bundles $K+\mathfrak{a}$ with $\mathfrak{a} \in \operatorname{Tors} X=\mathbb{Z} / 5$.

Let X be a surface as in the section heading. The elements of Tors $X=$ $\mathbb{Z} / 5$ will be denoted $1,2,3,4,0(\bmod 5)$. Let $x_{i} \in H^{0}(K+i)$ be nonzero elements for $i=1,2,3,4$.

Any monomial in the x_{i} is a section of some $N K+l$:

$$
\prod x_{i}^{a_{i}} \in H^{0}(N K+l), \quad \text { where } \quad \sum a_{i}=N \quad \text { and } \quad \sum i a_{i} \equiv l \bmod 5
$$

For example, $H^{0}(5 K)$ contains the following 12 elements:

$$
\begin{align*}
& x_{1}^{5}, x_{2}^{5}, x_{4}^{5}, x_{3}^{5}, \\
& x_{1}^{3} x_{3} x_{4}, x_{2}^{3} x_{1} x_{4}, x_{4}^{3} x_{1} x_{2}, x_{3}^{3} x_{2} x_{4}, \tag{1}\\
& x_{1}^{2} x_{2}^{2} x_{4}, x_{2}^{2} x_{4}^{2} x_{3}, x_{4}^{2} x_{3}^{2} x_{1}, x_{3}^{2} x_{1}^{2} x_{2} .
\end{align*}
$$

Since $h^{0}(5 K)=11$ there is at least one notrivial relation g between these elements. It will turn out that these x_{i} and the relation g are in a certain sense a set of generators and relations of the canonical ring of X.

Let $\psi: Y \rightarrow X$ be the étale cover corresponding to Tors $X ; \psi^{*}$ Tors $X=0$, so that each $\psi^{*} x_{i}$ is a section of $\psi^{*}(K+i)=K_{Y}$. I will continue to denote these sections $x_{i} \in H^{0}\left(K_{Y}\right)$; each x_{i} defines a divisor D_{i} on X and a divisor $\psi^{*} D_{i}$ on Y which is invariant under the group action. In view of Lemma 0.1, the 3 divisors D_{1}, D_{2}, D_{3} are disjoint on X, so that $\psi^{*} D_{1}, \psi^{*} D_{2}$ and $\psi^{*} D_{3}$, are disjoint on Y. In particular K_{Y} is without base points, and (since $K_{Y}^{2}=5$, $p_{g}=4$), $\varphi_{K_{Y}}$ is therefore a birational morphism onto a quintic \bar{Y} of \mathbb{P}^{3}.

By definition, the cover $\psi: Y \rightarrow X$ is Spec of the \mathcal{O}_{X}-algebra

$$
\bigoplus_{i=0}^{4} \mathcal{O}_{X}(i)
$$

and has Galois group $\mathbb{Z} / 5$ acting by multiplying the i th factor by ε^{i}, where ε is a primitive 5 th root of 1 . The $x_{i} \in H^{0}\left(K_{Y}\right)$ are just the eigenvectors of this action.

Theorem 1.1 (i) The $x_{i} \in H^{0}\left(K_{Y}\right)$ generate the canonical ring of Y, and there is just on relation g between them, g being a linear combination of the elements (1) above.
(ii) The pluricanonical ring $R(X)$ is the ring of invariants of the $\mathbb{Z} / 5$ action on $R(Y)$; thus every $H^{0}(N K)$ is spanned by the monomials in the x_{i} belonging to $i t$, and the only relations between these are multiples of g by some element of $H^{0}((N-5) K)$.

An obvious necessary and sufficient condition that a surface Y defined by a quintic g does not meet the 4 fixed points $(0, \ldots, 1, \ldots, 0)$ of the group action on \mathbb{P}^{3} is that the coefficients of the x_{i}^{5} in g do not vanish. One therefore obtains a description of the moduli space of Godeaux surfaces as in Miyaoka [1].

2 Surfaces with $K^{2}=1, p_{g}=0$ and \mid Tors $\mid=4$

Theorem 2.1 There are no surfaces with $p_{g}=0, K^{2}=1$ and Tors $=$ $\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$.

Proof Suppose that X is such a surface; let $01,10,11$ be the nontrivial torsion elements of Pic X, and x_{01}, x_{10} and x_{11} nonzero sections of the bundles $K+01, K+10, K+11$. The square $x_{01}^{2}, x_{10}^{2}, x_{11}^{2}$ all belong to $H^{0}(2 K)$, so that there is a linear dependence relation between them.

Now let Y be the cover of X corresponding to Tors X; the 3 sections x_{01}, x_{10}, x_{11} are linearly independent sections of K_{Y} and thus form a basis of $H^{0}\left(K_{Y}\right)$; but there is a nontrivial quadratic relation between them, which implies that the canonical linear system $\left|K_{Y}\right|$ is composed with a pencil: $\left|K_{Y}\right|=2|D|+F$, where $|D|$ is a pencil without fixed part, and F the fixed part. Then since $K^{2}=4, F \neq 0$ - for otherwise $D^{2}=1$ and $K D=2$, contradicting $D^{2} \equiv K D \bmod 2$. But if $F \neq 0$ then the curves defined by x_{01} and x_{10} have a common component on Y, hence also on X, contradicting Lemma 0.1; this establishes the result.

Now let X be a surface with $K^{2}=1, p_{g}=0$ and Tors $=\mathbb{Z} / 4$. As for the Godeaux surface, I will denote the elements of Tors X by $1,2,3,0 \bmod 4$. For $i=1,2,3$, let $x_{i} \in H^{0}(K+i)$ be nonzero. Then the $H^{0}(2 K+i)$ contain the following elements:

$$
\begin{align*}
x_{1} x_{3}, x_{2}^{2} & \in H^{0}(2 K), \\
x_{2} x_{3}, y_{1} & \in H^{0}(2 K+1), \\
x_{1}^{2}, x_{3}^{2} & \in H^{0}(2 K+2), \tag{2}\\
x_{1} x_{2}, y_{3} & \in H^{0}(2 K+3) ;
\end{align*}
$$

the two elements occurring in $H^{0}(2 K)$ and $H^{0}(2 K+2)$ are linear independents - for otherwises, say $x_{1} x_{3}+a x_{2}^{2}=0$, which contradicts Lemma 0.1. The generators $y_{i} \in H^{0}(2 K+i)$ (for $i=1$ or 3) are chosen to be linearly
independent from the monomial in the x_{i}. Thus the elements of (2) provide bases for $H^{0}(2 K+i)$.

A monomial in the x_{i} and y_{i} is as before an element of $H^{0}(N K+l)$:

$$
\prod x_{i}^{a_{i}} y_{i}^{b_{j}} \in H^{0}(N K+l)
$$

where $\sum\left(a_{i}+2 b_{i}\right)=N$ and $\sum\left(i a_{i}+i b_{i}\right) \equiv l \bmod 4$.
In particular, one observes that $H^{0}(4 K)$ and $H^{0}(4 K+2)$ each contains 8 monomials in the x_{i} and y_{i}, so that there is a linear dependence relation between each of these sets, q_{0} and q_{2} respectively:

$$
\begin{aligned}
x_{1}^{4}, x_{2}^{4}, x_{3}^{4}, x_{1}^{2} x_{2}^{2}, x_{1} x_{2}^{2} x_{3}, x_{1} x_{2} y_{1}, x_{2} x_{3} y_{3} \in H^{0}(4 K) & : q_{0} ; \\
x_{1}^{2} x_{2}^{2}, x_{2}^{2} x_{3}^{2}, x_{1}^{3} x_{2}, x_{1} x_{3}^{3}, x_{1} x_{2} y_{3}, x_{2} x_{3} y_{1}, y_{1}^{2}, y_{3}^{2} \in H^{0}(4 K+2) & : q_{2} .
\end{aligned}
$$

As in $\S 1$ it will turn out that the x_{i} and y_{i} provide a set of generators for the canonical ring of X, and the q_{0} and q_{2} the only relations.

Let $\psi: Y \rightarrow X$ be as before the étale cover corresponding to Tors X. As before, let $x_{i} \in H^{0}\left(K_{Y}\right)$ and $y_{i} \in H^{0}\left(2 K_{Y}\right)$ be the elements $\psi^{*} x_{i}$ and $\psi^{*} y_{i}$. By Lemma 0.1 , the x_{i} have no common zero on X, so that $\left|K_{Y}\right|$, and a fortiori $\left|2 K_{Y}\right|$ is without base points. A basis for $\left|2 K_{Y}\right|$ is given by the elements (2), so that $\varphi_{2 K_{Y}}$ is contained in the cone on the Veronese surface \bar{F}, the projective variety corresponding to the graded ring $k\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right] . \varphi_{2 K_{Y}}$ is actually the complete intersection inside this variety of the two hypersurfaces defined by q_{0} and q_{2} above.

Theorem 2.2 (i) The x_{i} and y_{i} generate the canonical ring of Y, and the q_{0} and q_{2} above are the only relations.
(ii) The canonical ring $R(X)$ is the invariant subring of the action of $\mathbb{Z} / 4$ on $R(Y)$.

One verifies easily that the fixed loci of the action of $\mathbb{Z} / 4$ on the cone on the Veronese are contained in the union of the following 3 linear varieties:

$$
\begin{align*}
& V_{1}: x_{1}=x_{2}=x_{3}=0, \\
& V_{2}: x_{2}=y_{1}=y_{3}=0, \tag{3}\\
& V_{3}: x_{1}=x_{3}=y_{1}=y_{3}=0 ;
\end{align*}
$$

it is easy to write down necessary and sufficient conditions on the coefficients of q_{0} and q_{2} so that the locus $\bar{Y}: q_{0}=q_{2}=0$ does not meet V_{1}, V_{2}, V_{3}; for example

$$
q_{0}=x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+y_{1} y_{3} \quad \text { and } \quad q_{2}=x_{1}^{3} x_{2}+x_{1} x_{3}^{3}+y_{1}^{2}+y_{3}^{2}
$$

satisfy this condition, and also define a nonsingular Y.
The canonical class of the surface Y so constructed is calculated as follows: let $F=\mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(2) \oplus \mathcal{O}(2)) \xrightarrow{\pi} \mathbb{P}^{2}$ be the standard scroll; F has two line bundles $L=\pi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)$ and the tautological bundle M of the Proj (so that $\left.\pi_{*} M=\mathcal{O} \oplus \mathcal{O}(2) \oplus \mathcal{O}(2)\right)$. The map φ_{M} has image $\varphi_{M}(F)=\bar{F}$, the cone on the Veronese. The inverse image $B=\varphi_{M}^{-1}$ (vertex) is the unique divisor in the linear system $|M-2 L|$.

One sees that the the canonical class K_{F} is given by $K_{K} \sim-3 M-L$. Since Y is the complete intersection in F of two divisors in $|2 M|$ we have $K_{Y} \sim M_{\mid Y}-L_{\mid Y}$ (by the adjunction formula), so that $K_{Y} \sim B_{\mid Y}+L_{\mid Y}$. But Y and B are disjoint, so that $B_{\mid Y}=0$ and $K_{Y} \sim L_{\mid Y}$. Thus the linear system $\left|K_{Y}\right|$ is just the restriction to Y of the linear system L, so that Y satisfies $K^{2}=4, p_{g}=3$ and $\varphi_{M}(Y) \subset \mathbb{P}^{7}$ is bicanonic.

Proof of Theorem 2.2 We have seen that $\left|2 K_{Y}\right|$ is without base points. By counting degrees one sees that $\varphi_{2 K_{Y}}$ is either birational or is a double cover onto a surface of degree 8. Let me eliminate the second possibility. The restriction of $\varphi_{2 K_{Y}}$ to the general curve $C \in\left|K_{Y}\right|$ is the complete canonical system of C; in order that $\varphi_{2 K_{Y}}$ be $2-1, C$ must be hyperelliptic. Now the canonical map $\varphi_{K_{Y}}: Y \rightarrow \mathbb{P}^{2}$ can be described as the composite of $\varphi_{2 K_{Y}}$ with the projection from the vertex of the cone on the Veronese. Thus this 4-fold cover splits as a composite $Y \rightarrow \bar{Y} \rightarrow \mathbb{P}^{2}$ of two double covers; the first factor in this composite is composed with the hyperelliptic involution on C, but this implies that $\left|K_{Y}\right|$ cuts out on C a g_{4}^{1} which is composed with the hyperelliptic g_{2}^{1} of C; such a linear system is not complete, and this contradicts $H^{1}\left(\mathcal{O}_{Y}\right)=0$. Essentially the same argument is that above every line $l \subset \mathbb{P}^{2}$ one has on \bar{Y} a curve which is the canonical image of a hyperelliptic curve, which is hence rational; but then the ramification of $\bar{Y} \rightarrow \mathbb{P}^{2}$ must be in a conic, which contradicts the completeness of $\left|K_{Y}\right|$.

The following Lemma 2.3 implies at once that the image $\varphi_{2 K_{Y}}(Y)=\bar{Y}$ of the birational map $\varphi_{2 K_{Y}}$ is the complete intersection in \bar{F} of the hypersurfaces defined by q_{0} and q_{2}. Comparing $K_{\bar{Y}}$ as computed by the adjunction formula
with K_{Y} shows that \bar{Y} has only rational double points; the fact that the x_{i} and y_{i} then span the canonical ring of Y is then a standard verifiction that certain linear systems on F cut out complete linear systems on \bar{Y}.

Lemma 2.3 $\bar{Y} \subset \bar{F}$ is not contained in any reducible divisor $Q \in\left|\mathcal{O}_{\bar{F}}(2)\right|$.
Proof Equivalently, the inverse image $\varphi_{M}^{-1}(\bar{Y}) \subset F$ is not contained in any divisor $Q \in|2 M|$ which splits as $Q=Q_{1}+Q_{2}$, with the possible exception $Q_{1}=B, Q_{2} \in|2 M-B|=|B+4 L|$. Since the image $\varphi_{M}\left(Q_{2}\right)$ of $Q_{2} \in|B+2 L|$ does not span \mathbb{P}^{7}, it is enough to check that \bar{Y} is not contained in any divisor $Q_{2} \in|B+3 L|$. But $H^{0}\left(F, \mathcal{O}_{F}(B+3 L)\right)$ is spanned by the monomials

$$
\begin{aligned}
& x_{1}^{2} x_{2}, x_{3}^{2} x_{2}, x_{1} y_{3}, x_{3} y_{1} \\
& x_{1}^{2} x_{3}, x_{1} x_{2}^{2}, x_{3}^{3}, x_{2} y_{3} \\
& x_{1} x_{2} x_{3}, x_{2}^{3}, x_{1} y_{1}, x_{3} y_{2} \\
& x_{1}^{3}, x_{1} x_{2}^{2}, x_{2}^{2} x_{3}, x_{2} y_{1}
\end{aligned}
$$

These monomials are linearly independent as elements of $H^{0}\left(Y, 3 K_{Y}\right)$, as follows easily from the splitting into eigenspaces of the $\mathbb{Z} / 4$ action, and Lemmas 0.2 and 0.3 . For example, a nontrivial relation between the elements in the eigenspace of 1 can be written

$$
x_{1}\left(a x_{1} x_{2}+b y_{3}\right)=x_{3}\left(c x_{2} x_{3}+d y_{1}\right)
$$

which contradicts the choice of y_{i}. The other cases are similar, and the lemma is proved.

$3 K^{2}=1, p_{g}=0$ and Tors $X=\mathbb{Z} / 3$

In this section I show how to write down the equations defining a surface X with the invariants $p_{g}=0, K^{2}=1$ and Tors $X=\mathbb{Z} / 3$.

I start off with a description of the final construction, intended to clarify the rather complicated arguments that follow; the fact that this construction actually provides surfaces S with the required invariants follows from this description, from the form of the equations f and g given below, and from Bertini's theorem and a simple nonsingularity computation. Most of the work of this section is to show that any surface X with the above invariants is given by my construction.

The scroll F Consider the projective variety $\bar{F}=\operatorname{Proj} R$ associated to the graded ring $R=k\left[x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right]$ with $\operatorname{deg} x_{i}=1, \operatorname{deg} y_{i}=2$. The elements of degree 2

$$
\begin{equation*}
x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}, y_{0}, y_{1}, y_{2} \tag{4}
\end{equation*}
$$

define an embedding of \bar{F} in \mathbb{P}^{5} as a quadric of rank 3 , the cone with vertex \mathbb{P}^{2} (coordinates y_{0}, y_{1}, y_{2}) over the plane conic (with coordinates $x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}$.

The natural desingularisation F of \bar{F} is the rational scroll

$$
F=\mathbb{P}_{\mathbb{P}^{1}}(\mathcal{E}), \quad \pi: F \rightarrow \mathbb{P}^{1}
$$

where \mathcal{E} is the rank 4 vector bundle $\mathcal{E}=\mathcal{O} \oplus \bigoplus_{i=0}^{2} \mathcal{O}(-2)$. Write A for a fibre of $\pi: F \rightarrow \mathbb{P}^{1}$, so that $\mathcal{O}_{F}(A)=\pi^{*} \mathcal{O}(1)$, and B for the divisor of F corresponding to the unique section of \mathcal{E}, so that $\mathcal{O}_{F}(B)$ is the tautological bundle of F.

The linear system $|2 A+B|$ defines a morphism

$$
\varphi: F \rightarrow \bar{F} \subset \mathbb{P}^{5} ;
$$

and $B=\varphi^{-1}$ (vertex). Obviously $B=\mathbb{P}^{1} \times \mathbb{P}^{2}$, with φ projecting B to the second factor.

On F take the bihomogeneous coordinates $\left(\left(x_{1}, x_{2}\right),\left(t, y_{0}, y_{1}, y_{2}\right)\right)$, where $\left(x_{1}, x_{2}\right)$ are coordinates on the base \mathbb{P}^{1}, and $t \in H^{0}\left(\mathbb{P}^{1}, \mathcal{E}\right)$ and the $x_{i} \in$ $H^{0}\left(\mathcal{O}_{F}(2 A+B)\right)=H^{0}\left(\mathbb{P}^{1}, \mathcal{E} \otimes \mathcal{O}(2)\right)$ are natural coordinates in the bundle \mathcal{E}. The bihomogeneity is expressed by the fact that the linear system $|n A+m B|$ on F is based by monomials

$$
t^{c} x_{1}^{a_{1}} x_{2}^{a_{2}} y_{0}^{b_{0}} y_{1}^{b_{1}} y_{2}^{b_{2}} \quad \text { with } \sum a_{i}+2 \sum b_{i}=n \text { and } c+\sum b_{i}=m .
$$

If we omit t, these are just the elements of degree n in the graded ring R having degree $\leq m$ in the y_{i}.

To construct the surface X with the specified invariants, I must construct its cyclic 3 -fold cover Y, which is a surface having $p_{g}=2, K^{2}=3$. The construction will be done as follows: take two irreducible divisor Q and C in F with $Q \in|6 A+2 B|$ and $C \in|6 A+3 B|$ such that
(i) Q contains 3 lines $\mathbb{P}^{1} \times p_{i} \subset B$, with p_{i} noncollinear points, and is nonsingular along them;
(ii) C contains the 3 lines $\mathbb{P}^{1} \times p_{i}$, and contains 3 fibres Q_{i} of $Q \rightarrow \mathbb{P}^{1}$;
(iii) $Q \cap C=\widetilde{Y}+\sum_{3} Q_{i}$, with \widetilde{Y} a surface which is nonsingular along $\mathbb{P}^{1} \times p_{i}$, and has only rational double points elsewhere;
(iv) B touches \widetilde{Y} along the 3 lines $\mathbb{P}^{1} \times p_{i}$.
(These conditions are not independent, and in particular (iv) is a consequence of (i), (ii) and (iii), as one sees by an argument similar to those given below.)

Then the 3 lines l_{i} are exceptional curves of the first kind on \widetilde{Y} and contracting them gives the required surface Y. For the proof, note that the canonical class of Y (a divisor inside a divisor of F) is given by the adjunction formula:

$$
K_{F}=-8 A-4 B ; \quad K_{Q}=\mathcal{O}_{Q}(-2 A-2 B) ; \quad \text { and } \quad K_{\widetilde{Y}}=\mathcal{O}_{Y}(A+B) .
$$

But $\mathcal{O}_{\tilde{Y}}(B)=2 \sum l_{i}$; since each $l_{i}^{2}<0$ (since it contracts under $\varphi: F \rightarrow \bar{F}$) it follows that $l_{i}^{2}=-1$. The invariants $p_{g}=2$ and $K_{Y}^{2}=3$ are easy.

The fact that conditions (i-iv) can be verified, and indeed that Y can be chosen invariant under a fixed-point free action of $\mathbb{Z} / 3$ will be checked at the end of this section.

Now let X be any surface having $K^{2}=1, p_{g}=0$ and Tors $X=\mathbb{Z} / 3$; as in the preceding sections, let $0,1,2$ denote the elements of $\mathbb{Z} / 3 \subset \operatorname{Pic} X$. In this case one can choose elements

$$
\begin{array}{rll}
& x_{i} \in H^{0}(K+i) & \text { for } i=1,2 ; \\
& y_{i} \in H^{0}(2 K+i) & \text { for } i=0,1,2 ; \\
\text { and } \quad z_{i} \in H^{0}(3 K+i) & \text { for } i=1,2
\end{array}
$$

so that the monomials in the x_{i}, y_{i} and z_{i} span the spaces $H^{0}(n K+i)$ for $n \leq 3$ as indicated in Table 1 .

Let $\psi: Y \rightarrow X$ be the 3 -fold cover of X corresponding to Tors X. I want to study the 2 -canonical map $\varphi_{2 K_{Y}}$ of Y in terms of X. Firstly, the two divisors $D_{i} \subset X$ defined by $x_{i}=0$ meet transversally in a point P; since

$$
H^{0}\left(\mathcal{O}_{D_{1}}\left(K_{X}+i\right)\right)= \begin{cases}1 & \text { if } i=2 \\ 0 & \text { if } i \neq 2\end{cases}
$$

and

$$
H^{0}\left(\mathcal{O}_{D_{1}}\left(2 K_{X}+i\right)\right)= \begin{cases}2 & \text { if } i=1 \\ 1 & \text { if } i \neq 2,\end{cases}
$$

none of the y_{i} can vanish at P.

Table 1:
sheaf sections
relations

$$
\begin{aligned}
& K+1 \quad x_{1} \\
& K+2 \quad x_{2} \\
& 2 K \quad x_{1} x_{2} \quad y_{0} \\
& 2 K+1 \quad x_{2}^{2} \quad y_{1} \\
& 2 K+2 \quad x_{1}^{2} \quad y_{2} \\
& 3 K \quad x_{1}^{3}, x_{2}^{3} \quad x_{1} y_{2}, x_{2} y_{1} \\
& 3 K+1 \quad x_{1}^{2} x_{2} \quad x_{1} y_{0}, x_{2} y_{2} \quad z_{1} \\
& 3 K+2 \quad x_{1} x_{2}^{2} \quad x_{1} y_{1}, x_{2} y_{0} \quad z_{2} \\
& 4 K \quad x_{1}^{2} x_{2}^{2}, \quad x_{1} x_{2} y_{0}, x_{1}^{2} y_{1}, x_{2}^{2} y_{2}, \quad y_{0}^{2}, y_{1} y_{2}, \quad x_{1} z_{2}, x_{2} z_{1} \quad R_{0} \\
& 4 K+1 \quad x_{1}^{4}, x_{1} x_{2}^{3}, \quad x_{1}^{2} y_{2}, x_{1} x_{2} y_{1}, x_{2}^{2} y_{0}, \quad y_{0} y_{1}, y_{2}^{2}, \quad x_{2} z_{2} \quad R_{1} \\
& 4 K+2 \quad x_{1}^{3} x_{2}, x_{2}^{4}, \quad x_{1}^{2} y_{0}, x_{1} x_{2} y_{2}, x_{2}^{2} y_{1}, \quad y_{0} y_{2}, y_{1}^{2}, \quad x_{1} z_{1}, \quad R_{2} \\
& 5 K \quad x_{1}^{4} x_{2}, x_{1} x_{2}^{4}, \quad x_{1}^{3} y_{0}, x_{1}^{2} x_{2} y_{2}, x_{1} x_{2}^{2} y_{1}, x_{2}^{3} y_{0} \\
& x_{1} y_{1}^{2}, x_{1} y_{0} y_{2}, x_{2} y_{0} y_{1}, x_{2} y_{2}^{2} \quad x_{1}^{2} z_{1}, x_{2}^{2} z_{2}, \quad x_{1} R_{2}, x_{2} R_{1}, \\
& y_{1} z_{2}, y_{2} z_{1} \\
& S_{0} \\
& 5 K+1 \quad x_{1}^{3} x_{2}^{2}, x_{2}^{5}, \quad x_{1}^{3} y_{1}, x_{1}^{2} x_{2} y_{0}, x_{1} x_{2}^{2} y_{2}, x_{2}^{3} y_{1} \\
& x_{1} y_{0}^{2}, x_{1} y_{1} y_{2}, x_{2} y_{0} y_{2}, x_{2} y_{1}^{2} \quad x_{1}^{2} z_{2}, x_{1} x_{2} z_{1}, \quad x_{1} R_{0}, x_{2} R_{2}, \\
& y_{0} z_{1}, y_{2} z_{2} \\
& S_{1} \\
& 5 K+2 \quad x_{1}^{5}, x_{1}^{2} x_{2}^{3}, \quad x_{1}^{3} y_{2}, x_{1}^{2} x_{2} y_{1}, x_{1} x_{2}^{2} y_{0}, x_{2}^{3} y_{2} \\
& x_{1} y_{0} y_{1}, x_{1} y_{2}^{2}, x_{2} y_{0}^{2}, x_{2} y_{1} y_{2} \quad x_{1} x_{2} z_{2}, x_{2}^{2} z_{1}, \quad x_{1} R_{1}, x_{2} R_{0}, \\
& y_{0} z_{2}, y_{1} z_{1} \\
& S_{2} \\
& 6 K \quad x_{1}^{6}, x_{1}^{3} x_{2}^{3}, x_{2}^{6} \quad x_{1}^{4} y_{2}, x_{1}^{3} x_{2} y_{1}, x_{1}^{2} x_{2}^{2} y_{0}, x_{1} x_{2}^{3} y_{2}, x_{2}^{4} y_{1} \\
& x_{1}^{2} y_{0} y_{1}, x_{1}^{2} y_{2}^{2}, x_{1} x_{2} y_{0}^{2}, x_{1} x_{2} y_{1} y_{2}, x_{2}^{2} y_{0} y_{2}, x_{2}^{2} y_{1}^{2} \\
& y_{0}^{3}, y_{1}^{3}, y_{2}^{3}, y_{0} y_{1} y_{2} \quad(f, g) \\
& x_{1}^{2} x_{2} z_{2}, x_{1} x_{2}^{2} z_{1}, x_{1} y_{1} z_{1}, x_{2} y_{0} z_{1}, x_{1} y_{0} z_{2}, x_{2} y_{2} z_{2}, z_{1} z_{2} . \\
& \text { etc. }
\end{aligned}
$$

Proposition $3.1\left|2 K_{Y}\right|$ is without fixed points and defines a birational morphism $\varphi_{2 K_{Y}}: Y \rightarrow \bar{F} \subset \mathbb{P}^{5} . \varphi_{2 K_{Y}}$ takes the 3 points $\psi^{-1}(P)$ into three distinct points of the vertex \mathbb{P}^{2} of \bar{F} not lying on any of the coordinate axes $y_{i}=0$.

Since these 3 points are permuted by the $\mathbb{Z} / 3$ action, in suitable coordinates they become the 3 points $P_{\omega}=\left(1, \omega, \omega^{2}\right)$ with a root of $\omega^{3}=1$.

Proof The 3 points of $\psi^{-1}(P)$ are precisely the fixed points of $\left|K_{Y}\right|$, while none of the y_{i} vanish at them; the fact that $\left|2 K_{Y}\right|$ is without fixed points is an immediate consequence of this.

If $\varphi_{2 K_{Y}}$ is not birational then it must be either $2-1$ onto a rational surface (in which case Y cannot have a fixed point free action by a group of order 3), or it must be $3-1$ onto the Veronese surface W, a rational scroll \mathbb{F}_{0} or \mathbb{F}_{2} or a cone $\overline{\mathbb{F}}_{4}$ over a rational normal curve of degree 4; the case of the Veronese surface is impossible, since it leads to Y having a nontrivial 2-torsion element. In the \mathbb{F}_{2} case, the pencil $|A|$ of \mathbb{F}_{2} lifts to give a base point free pencil E, and $2 K_{Y} \sim 3 E+F$, with $F>0$. Then $6=2 K_{Y}^{2}=3 K_{Y} E+K_{Y} F$ implies that $K_{Y} E=2$, so that $|E|$ is a pencil of genus 2 ; in this case $\left|2 K_{Y}\right|$ must be composed with a 2-1 map, which is a contradiction. In the \mathbb{F}_{0} and $\overline{\mathbb{F}}_{4}$ cases a similar purely numerical argument gives an immediate contradiction.

Proposition 3.2 The image $\varphi_{2 K_{Y}}(Y)=\bar{Y} \subset \bar{F} \subset \mathbb{P}^{5}$ is contained in two cubics linearly independent from the cubics containing \bar{F}; and one of those cubics can be chose to contain the vertex \mathbb{P}^{2} of \bar{F}.

Proof As indicated in Table 1, $H^{0}\left(X, 6 K_{X}\right)$ contains 18 monomials in the x_{i} and y_{i}, whereas $h^{0}\left(6 K_{X}\right)=16$; the two relations between these monomials can be written as cubics in the elements of (4).

To get more precise information, consider the 3 spaces $H^{0}(4 K+i)$, each of which contains 8 monomials; since $h^{0}(4 K)=7$, there is one relation between the elements in each, say R_{0}, R_{1} and R_{2}. The monomials involving the z_{i} are as follows

$$
\begin{aligned}
& R_{0}: x_{1} z_{2}, x_{2} z_{1}, \\
& R_{1}: x_{2} z_{2}, \\
& R_{2}: \quad x_{1} z_{1} .
\end{aligned}
$$

A suitable linear combination of $x_{1} x_{2} R_{0}, x_{1}^{2} R_{1}$ and $x_{2}^{2} R_{2}$ does not involve the z_{i}. If this linear combination is identically zero then it must involve at least one of $x_{1}^{2} R_{1}$ or $x_{2}^{2} R_{2}$, and it follows that (say) R_{1} is identically divisible by x_{2}, leading to a relation Q_{2} between the elements of $H^{0}(3 K+2)$, which contradicts the choice of z_{2}.

This relation f does not contain any monomials cubic in the y_{i}, so that it defines an element $Q \in|6 A+2 B|$ on F, or a cubic of \mathbb{P}^{5} containing the vertex of \bar{F}. The proposition is proved.

Let \widetilde{Y} denote the inverse image of $\bar{Y} \subset \bar{F}$ under $\varphi: F \rightarrow \bar{F}$. The restriction $\varphi: \widetilde{Y} \rightarrow \bar{Y}$ consists just of blowing up the intersection of \bar{Y} with the vertex \mathbb{P}^{2} of \bar{F}, that is, the 3 points $P_{\omega}=\left(1, \omega, \omega^{2}\right)$, with $\omega^{3}=1$, so that the set theoretic intersection of \widetilde{Y} with $B \subset F$ consists of the 3 lines $\mathbb{P}^{1} \times P_{\omega} \subset B$.

The following lemma will ensure that the monomials $x_{i} z_{j}$ occur in the relations R_{i+j} with nonzero coefficients, so that after making an obvious normalisation we have

$$
\begin{aligned}
& R_{0}=x_{1} z_{2}+x_{2} z_{1}+\cdots\left(\text { terms not involving } z_{i}\right) \\
& R_{1}=x_{2} z_{2}+\quad \cdots \\
& R_{2}=\quad x_{1} z_{1}+\cdots
\end{aligned}
$$

and hence

$$
f=x_{1} x_{2} R_{0}-x_{1}^{2} R_{1}-x_{2}^{2} R_{2} .
$$

Lemma $3.3 \bar{Y}$ is not contained in any divisor $Q^{\prime} \in|n A+2 B|$ on F with $n<6$.

Proof \bar{Y} is obviously not contained in any divisor in $|n A+B|$ for any n, since the fibres of $\widetilde{Y} \rightarrow \mathbb{P}^{1}$ are canonical curves of genus 4. And $|n A+m B|$ contains B as a fixed component if (and only if) $n<2 m$, so that I only need to check that Y is not contained in any irreducible element of $|n A+2 B|$ with $n=4$ or 5 ; I can choose this element to be invariant under the action of $\mathbb{Z} / 3$.

The 3 fixed loci of the action of $\mathbb{Z} / 3$ on F are as follows:
(i) $\left\{t=x_{1}=y_{1}=y_{2}=0\right\} \cup\left\{t=x_{2}=y_{1}=y_{2}=0\right\}$,
(ii) $\left\{x_{1}=y_{0}=y_{2}=0\right\}$,
(iii) $\left\{x_{2}=y_{0}=y_{2}=0\right\}$.

An invariant element of $|4 A+2 B|$ or $|5 A+2 B|$ is given by a linear combination of the monomials in x_{i} and y_{i} occurring in one of the $H^{0}(X, n K+i)$ (for $n=4$ or $5, i=0,1$ or 2$)$. One checks at once that any such hypersurface must contain one of the loci (ii) or (iii). An irreducible element of $|n A+2 B|$ meets each fibre of $F \rightarrow \mathbb{P}^{1}$ in a quadric, and the fixed locus (ii) or (iii) will be a line lying on such a quadric. The fibres of \widetilde{Y} are the canonical images of curves in $\left|K_{Y}\right|$, contained in the fibres of Q; it would follow that \widetilde{Y} must meet the fixed locus, and in turn this implies that the action of $\mathbb{Z} / 3$ on Y has a fixed point.

Corollary 3.4 The two divisors $Q \in|6 A+2 B|$ and $C \in|6 A+3 B|$ defined by the cubics f and g of Proposition 3.2 are irreducible, and their intersection consists of \widetilde{Y} together with a number of components of the fibres of $Q \rightarrow \mathbb{P}^{1}$. of total degree 6 .

The residual intersection has degree 0 in the general fibre, so is contained in fibres of Q. The degree of a surface in a fibre of $F \rightarrow \mathbb{P}^{1}$ is the same as the degree of its image under $\varphi: F \rightarrow \bar{F} \subset \mathbb{P}^{5}$ (which is linear on the fibres of F), and the total degree of the residual components is

$$
\operatorname{deg} \bar{F} \cdot Q \cdot C-\operatorname{deg} \bar{Y}=2 \cdot 3 \cdot 3-\left(2 K_{Y}\right)^{2}=18-12=6
$$

If some fibre of $Q \rightarrow \mathbb{P}^{1}$ splits as a pair of planes, and just one of these is a residual component, then $\widetilde{Y} \subset Q$ will not be a Cartier divisor.

Lemma 3.5 The fibre of Q over $\left(x_{1}=0\right)$ and $\left(x_{2}=0\right)$ does not split as a pair of planes.

Proof $x_{i}=0$ defines a divisor on Y which is invariant under the group action; it follows that there is either one component G with $2 K_{Y} G=6$ (so that the fibre of \widetilde{Y} is irreducible), or 3 components G_{i} with $2 K_{Y} G_{i}=2$ interchanged by the group action. Symmetry considerations show that in this last case the G_{i} map into 3 conics, no 2 of which are coplanar. This proves the lemma.

Using the fact that Q contains the 3 lines $l_{\omega}=\mathbb{P}^{1} \times P_{\omega} \subset B$, we see that the R_{i} and f must have the form

$$
\begin{aligned}
& R_{0}: x_{1} z_{2}+x_{2} z_{1}+a_{0}\left(y_{0}^{2}-y_{1} y_{2}\right)+\cdots ; \\
& R_{1}: x_{2} z_{2} \quad+a_{1}\left(y_{0} y_{1}-y_{2}^{2}\right)+\cdots ; \\
& R_{2}: \quad+x_{1} z_{1}+a_{2}\left(y_{0} y_{2}-y_{1}^{2}\right)+\cdots
\end{aligned}
$$

and

$$
f=a_{0} x_{1} x_{2}\left(y_{0}^{2}-y_{1} y_{2}\right)+a_{1} x_{1}^{2}\left(y_{2}^{2}-y_{0} y_{1}\right)+a_{2} x_{2}^{2}\left(y_{1}^{2}-y_{0} y_{2}\right)+\cdots,
$$

where \cdots denote terms of degree ≤ 1 in the y_{i}.
Since if (say) $a_{1}=0$ then the restriction of f to $x_{2}=0$ splits as a product of planes, Lemma 3.5 has the following corollary:

Corollary $3.6 a_{i} \neq 0$ for $i=1$ and 2 .
There are certain syzygies relating the R_{i} and the relations S_{i} between the monomials in the spaces $H^{0}(5 K+i)$, which will imply also that $a_{0} \neq 0$. To obtain these syzygies I have to prove similar statements to Corollary 3.6 for the leading terms of the S_{i}. These will follow from the following key lemma.

Lemma $3.7 h^{0}\left(F, \mathcal{I}_{\tilde{Y}} \cdot \mathcal{O}_{F}(6 A+3 B)\right)=2$.
In words, the two cubics containing \bar{Y} provided by Proposition 3.2 are the only ones. The proof is longer than it is interesting, and is deferred to the end of this section.

Now consider the relations occurring between the monomials in x_{i}, y_{i}, z_{i} in $H^{0}(5 K+i)$; each of these spaces contains 14 monomials, and is 11dimensional. There must therefore be one relation S_{i} in each, in addition to the two relations $x_{1} R_{i-1}$ and $x_{2} R_{i-2}$. By subtracting off suitable multiples of $x_{1} R_{i-1}$ and $x_{2} R_{i-2}$ from S_{i} one can eliminate terms of degree 2 in the x_{i} and degree 1 in the z_{i}, and I can therefore assume that the terms involving z_{i} in the S_{i} are as follows:

$$
\begin{aligned}
& S_{0}: y_{1} z_{2}, y_{2} z_{1}, \\
& S_{1}: y_{0} z_{1}, y_{2} z_{2}, \\
& S_{2}: y_{0} z_{2}, y_{1} z_{1} .
\end{aligned}
$$

Proposition 3.8 (i) After a suitable normalisation,

$$
\begin{aligned}
& S_{0}: y_{1} z_{2}+y_{2} z_{1}+\cdots \\
& S_{1}: y_{0} z_{1}+y_{2} z_{2}+\cdots \\
& S_{2}: y_{0} z_{2}+y_{1} z_{1}+\cdots
\end{aligned}
$$

where \cdots denotes terms not involving z_{i};
The R_{i} and S_{i} satisfy the following identities:

$$
\begin{align*}
x_{2} S_{0}+x_{1} S_{1} & \equiv y_{2} R_{0}+y_{1} R_{1}+y_{0} R_{2}, \\
x_{1} S_{0} & +x_{2} S_{2} \tag{0}
\end{align*}{\equiv y_{1} R_{0}+y_{0} R_{1}+y_{2} R_{2} .}^{2}
$$

Furthermore,

$$
g=x_{1} S_{2}+x_{2} S_{1}-y_{0} R_{0}-y_{2} R_{1}-y_{1} R_{2}
$$

defines a divisor $C \in|6 A+3 B|$ containing \widetilde{Y}.
The relations

$$
\begin{aligned}
h_{0} & =x_{1} x_{2} S_{0}-x_{1} y_{1} R_{1}-x_{2} y_{2} R_{2}, \\
h_{1} & =x_{1} x_{2} S_{1}-x_{1} y_{2} R_{1}-x_{2} y_{0} R_{2}, \\
h_{2} & =x_{1} x_{2} S_{2}-x_{1} y_{0} R_{1}-x_{2} y_{1} R_{2}
\end{aligned}
$$

satisfy the identities:

$$
\left(\begin{array}{c}
y_{0} f+x_{1} x_{2} g \\
y_{1} f \\
y_{2} f
\end{array}\right) \equiv\left(\begin{array}{ccc}
0 & x_{2} & x_{1} \\
x_{1} & 0 & x_{2} \\
x_{2} & x_{1} & 0
\end{array}\right)\left(\begin{array}{c}
h_{0} \\
h_{1} \\
h_{2}
\end{array}\right),
$$

or equivalently

$$
\left(y_{0}+\omega^{2} y_{1}+\omega y_{2}\right) f+x_{1} x_{2} g \equiv\left(\omega^{2} x_{1}+\omega x_{2}\right)\left(h_{0}+\omega^{2} h_{1}+\omega h_{2}\right)
$$

for the 3 roots of $\omega^{3}=1$.
Proof The syzygies (0) are a formal consequence of (i) and Lemma 3.7, since otherwise these expressions are relations between the monomials in the x_{i} and y_{i} in $H^{0}(6 K+i)$ for $i \neq 0$, and Lemma 3.7 assures us that there are
two relations f and g in $H^{0}(6 K)$ (the cubics of Poroposition 3.3), and no relations in $H^{0}(6 K+i)$ for $i \neq 0$.
(i) itself is proved by a similar argument: firstly each S_{i} involves at least one of the monomials $z_{1} y_{i-1}$ or $z_{2} y_{i-2}$ according to Lemma 3.3. Suppose say that S_{0} does not involves $y_{1} z_{2}$, that is $S_{0}=y_{2} z_{1}+\cdots$; then $x_{1} S_{0}-y_{2} R_{2}$ is either a relation in x_{i}, y_{i}, which contradicts Lemma 3.7, or is identically zero, which implies that R_{2} is identically divisible by x_{1}, which is a contradiction. Thus I can assume that $S_{0}=y_{1} z_{2}+y_{2} z_{1}+\cdots$. An identical argument shows that S_{1} must involve $y_{2} z_{2}$.

Suppose that $S_{1}=y_{2} z_{2}+\cdots$; then

$$
x_{1} S_{1}+x_{2} S_{0}-y_{2} R_{0}-y_{1} R_{1}
$$

cannot be a relation, by Lemma 3.7, and must therefore be identically zero. But this implies that the coefficient of $y_{0} y_{1}$ in R_{1} is zero, contradicting Corollary 3.6.

The normalisation to bring the coefficients of $y_{i} z_{j}$ to 1 is straightforward.
The relations $(+)$ imply that the divisor $C \in|6 A+3 B|$ defined by g meets Q in \widetilde{Y} together with the 3 fibres of Q over $x_{1}^{3}+x_{2}^{3}=0$, that is $Q \cap C=\widetilde{Y}+Q_{-1}+Q_{-\omega}+Q_{-\omega^{2}}$; furthermore, inverting the matrix in $(+)$ one sees that

$$
\left(x_{1}^{3}+x_{2}^{3}\right) h_{0}=\left(-x_{1} x_{2} y_{0}+x_{1}^{2} y_{1}+x_{2}^{2} y_{2}\right) f-x_{1}^{2} x_{2}^{2} g
$$

so that h_{0} defines a divisor $C_{0} \in|7 A+3 B|$ which cuts out $\widetilde{Y}+2 Q_{0}+2 Q_{\infty}$ on Q.

The above discussion determines the canonical ring of Y and of X for any surface X with invariants $p_{g}=0, K^{2}=1$ and Tors $X=\mathbb{Z} / 3$. I have not written down all the relations holding between the x_{i}, y_{i} and z_{i}, since there are further relations in $H^{0}(6 K+i)$ which express the quadratic terms $z_{1}^{2}, z_{1} z_{2}, z_{2}^{2}$ as functions of the x_{i} and y_{i}. However, these final relations are determined in an obvious way by the R_{i} and S_{i}.

To finish, I have to show that the construction actually works. For this I write down the most general form of the relations $R_{0}, R_{1}, R_{2}, S_{0}, S_{1}, S_{2}$. I choose $z_{i} \in H^{0}(3 K+i)$ and $y_{i} \in H^{0}(2 K+i)$ to eliminate several terms in the R_{i}, and obtain

$$
\begin{aligned}
& R_{0}=x_{2} z_{1}+x_{1} z_{2}+y_{0}^{2}-y_{1} y_{2}+c x_{1}^{2} y_{1}+d x_{2}^{2} y_{2}+e x_{1}^{2} x_{2}^{2}, \\
& R_{1}=\quad x_{2} z_{2}+y_{2}^{2}-y_{0} y_{1}+a x_{1}^{4} \\
& R_{2}=x_{1} z_{1}+\quad+y_{1}^{2}-y_{0} y_{2}+b x_{2}^{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& S_{0}=y_{2} z_{1}+y_{1} z_{2}+c x_{1} y_{1}^{2}+d x_{2} y_{2}^{2}+a x_{1}^{3} y_{0}+b x_{2}^{3} y_{0}+x_{1} x_{2} S, \\
& S_{1}=y_{0} z_{1}+y_{2} z_{2}+c x_{1} y_{1} y_{2}-c x_{2} y_{1}^{2}+a x_{1}^{3} y_{1}-a x_{1}^{2} x_{2} y_{0}+e x_{1} x_{2}^{2} y_{2}-x_{2}^{2} S, \\
& S_{2}=y_{1} z_{1}+y_{0} z_{2}+d x_{2} y_{1} y_{2}-d x_{1} y_{2}^{2}+b x_{2}^{3} y_{2}-b x_{1} x_{2}^{2} y_{0}+e x_{1}^{2} x_{2} y_{1}-x_{1}^{2} S
\end{aligned}
$$

here a, b, c, d, e and the 4 coefficients of S (a linear combination of $x_{1} y_{2}, x_{2} y_{1}$, x_{1}^{3} and x_{2}^{3}) are 9 free parameters. I have used a transformation of the form $x_{i} \mapsto \lambda x_{i}, y_{i} \mapsto \mu y_{i}, z_{i} \mapsto \nu z_{i}$ to bring the coefficient of $\left(y_{0}^{2}-y_{1} y_{2}\right)$ in R_{0} to 1, and the form of the equations is unique up to a further such transformation with $\mu=1, \nu=\lambda^{-1}$.

One therefore gets

$$
\begin{aligned}
f= & x_{1} x_{2}\left(y_{0}^{2}-y_{1} y_{2}\right)-x_{1}^{2}\left(y_{2}^{2}-y_{0} y_{1}\right)-x_{2}^{2}\left(y_{1}^{2}-y_{0} y_{2}\right) \\
\quad & \quad c x_{1}^{3} x_{2} y_{1}+d x_{1} x_{2}^{3} y_{2}-a x_{1}^{6}+e x_{1}^{3} x_{2}^{3}-b x_{2}^{6} ; \\
-g= & y_{0}^{3} \\
\quad & \quad+y_{1}^{3}+y_{2}^{3}-3 y_{0} y_{1} y_{2}+c x_{1}^{2} y_{0} y_{1}+d x_{2}^{2} y_{0} y_{2} \\
\quad & (c+d) x_{1} x_{2} y_{1} y_{2}+d x_{1}^{2} y_{2}^{2}+c x_{2}^{2} y_{1}^{2}+(a+b+e) x_{1}^{2} x_{2}^{2} y_{0} \\
\quad & \left(b x_{2}^{3}-(a+e) x_{1}^{3}\right) x_{2} y_{1}+\left(a x_{1}^{3}-(b+e) x_{2}^{3}\right) x_{1} y_{2}+\left(x_{1}^{3}+x_{2}^{3}\right) S ; \\
-h_{0}= & x_{1} y_{1}\left(y_{2}^{2}-y_{0} y_{1}\right)+x_{2} y_{2}\left(y_{1}^{2}-y_{0} y_{2}\right)-c x_{1}^{2} x_{2} y_{1}^{2}-d x_{1} x_{2}^{2} y_{2}^{2} \\
\quad & \quad\left(a x_{1}^{3}+b x_{2}^{3}\right) x_{1} x_{2} y_{0}+a x_{1}^{5} y_{1}+b x_{2}^{5} y_{2}-x_{1}^{2} x_{2}^{2} S .
\end{aligned}
$$

One sees easily that for general values of the parameters a, b, c, d and e, the equation f defines a nonsingular divisor $Q \subset F$. In fact, Bertini's theorem shows that it can only have singularities on B for general values of the coefficients, and this will be sufficient in view of the computations to follow. Fixing f, and applying Bertini's theorem to the linear system obtained by varying S, one sees that the singularities of the general \widetilde{Y} are contained in B.

Now obviously, for any values of the parameters, the intersection of B with the variety defined by $f=g=h_{0}=0$ is set theoretically contained in the 3 lines $l_{\omega}=\mathbb{P}^{1} \times P_{\omega} \subset B$.

I write down the derivatives of f, g and h_{0} with respect to the coordinates $\left(x_{1}, x_{2}\right),\left(t, y_{0}, y_{1}, y_{2}\right)$ of F, and evaluate them at the point $\left(x_{1}, x_{2}\right)$,

$$
\left(0,1, \omega, \omega^{2}\right) \text { of } l_{\omega}
$$

	f	$-g /(c+d)$	h_{0}
t	$\omega c x_{1}^{3} x_{2}+\omega^{2} d x_{1} x_{2}^{3}$	$\omega x_{1}^{2}-x_{1} x_{2}+\omega^{2} x_{2}^{2}$	$\omega^{2} c x_{1}^{2} x_{2}+\omega d x_{1} x_{2}^{2}$
x_{1}	0	0	0
x_{2}	0	0	0
y_{0}	$\left(\omega^{2} x_{1}+\omega x_{2}\right)^{2}$	0	$\omega^{2} x_{1}+\omega x_{2}$
y_{1}	$\left(\omega^{2} x_{1}+\omega x_{2}\right)\left(\omega x_{1}-2 x_{2}\right)$	0	$\omega x_{1}-2 x_{2}$
y_{2}	$\left(\omega^{2} x_{1}+\omega x_{2}\right)\left(-2 x_{1}+\omega^{2} x_{2}\right)$	0	$-2 x_{1}+\omega^{2} x_{2}$

Thus one sees immediately that f is nonsingular along l_{ω}, provided that $c+d \neq 0$; and that the intersection $Q \cap C$ defined by $f=g=0$ is nonsingular along l_{ω} except at the points where $x_{1}^{3}+x_{2}^{3}=0$. At the point $\left(\omega,-\omega^{2}\right),\left(0,1, \omega, \omega^{2}\right)$ (the point of l_{ω} where $\left.\omega^{2} x_{1}+\omega x_{2}=0\right)$, the derivatives $\frac{\partial f}{\partial t}$ and $\frac{\partial h_{0}}{\partial y_{1}}$ are both nonzero, whereas if $\omega^{2} x_{1}+\omega x_{2} \neq 0$ and $x_{1} x_{2} \neq 0$ the derivatives $\frac{\partial\left(f, h_{0}\right)}{\partial\left(y_{0}, y_{1}, y_{2}\right)}$ provide a nonzero 2×2 minor. Thus the intersection $\widetilde{Y}=Q \cap C \cap C_{0}$ is nonsingular for general values of the parameters. The tangent space to \widetilde{Y} is contained in the tangent space to B at any point of l_{ω} as follows from the above derivatives. Finally, the fixed points of the $\mathbb{Z} / 3$ action on F are listed in the proof of Lemma 3.3, and it is easy to see that for general values of the parameters \widetilde{Y} does not meet these loci.

I have proved:
Theorem 3.9 There exist surfaces X having $p_{g}=0, K^{2}=1$ and Tors $X=$ $\mathbb{Z} / 3$ and these form an irreducible moduli space.

Furthermore if X is any such surface and $Y \rightarrow X$ the $\mathbb{Z} / 3$ cover corresponding to Tors X, then the canonical ring of Y can be generated by elements $x_{1}, x_{2}, y_{0}, y_{1}, y_{2}, z_{1}, z_{2}$ as above, and the relations are $R_{0}, R_{1}, R_{2}, S_{0}, S_{1}, S_{1}, S_{2}$ together with certain relations T_{0}, T_{1}, T_{2} experssing $z_{1} z_{2}$, z_{2}^{2} and z_{1}^{2} in terms of the x_{i} and y_{i}; the R_{i} and S_{i} can be written as above.

Proof of Lemma 3.7 Let $Q \subset F$ be the unique irreducible divisor $Q \in$ $|6 A+2 B|$ containing \widetilde{Y}. An equivalent formulation of Lemma 3.7 is that the image of the restriction map

$$
H^{0}\left(F, \mathcal{I}_{\widetilde{Y}} \cdot \mathcal{O}_{F}(6 A+3 B)\right) \rightarrow H^{0}\left(Q, \mathcal{I}_{\widetilde{Y}} \cdot \mathcal{O}_{Q}(6 A+3 B)\right)
$$

is 1-dimensional. Suppose otherwise. Then I can find two elements p and q in $H^{0}\left(F, \mathcal{I}_{\widetilde{Y}} \cdot \mathcal{O}_{F}(6 A+3 B)\right)$ that are eigenforms of the $\mathbb{Z} / 3$ action, and
restrict to give linearly independent elements of $H^{0}\left(Q, \mathcal{I}_{\widetilde{Y}} \cdot \mathcal{O}_{Q}(6 A+3 B)\right)$. Since the linear system $L \subset|6 A+3 B|_{Q}$ defined by p and q is made up of divisors containing \widetilde{F}, it is of the form

$$
L=M+Z,
$$

where $Z \in|(6-r) A+3 B|$ is the fixed part (containing \tilde{Y}), and $M \subset|r A|$ is a linear system without fixed part; clearly $1 \leq r \leq 3$. The divisors M_{p} and M_{q} corresponding to p and q are invariant elements of $|r A|$ without common components.

Case (i), $r=1$. Consider first of all the simplest case $r=1$; the only invariant elements of $|A|$ are Q_{0} and Q_{∞}, so that I can assume $M_{p}=Q_{0}$ and $M_{q}=Q_{\infty}$. But then both of $x_{2} p$ and $x_{1} q$ define the same divisor $Z+Q_{0}+Q_{\infty}$, so that some linear combinations, say $x_{2} p-x_{1} q$, is divisible by f :

$$
x_{2} p-x_{1} q \equiv\left(a x_{1}+b x_{2}\right) f, \quad \text { so that } \quad x_{2}(p-a f) \equiv x_{1}(q+b f) .
$$

This identity implies, say, that $p-a f$ is divisible by x_{1}, which contradicts Lemma 3.3.

Case (ii), $r=2$. In the same way, I can assume $M_{p}=2 Q_{0}$ and $M_{q}=2 Q_{\infty}$, so that $x_{2}^{2} p$ and $x_{1}^{2} q$ both define $Z+2 Q_{0}+2 Q_{\infty}$ in Q, leading to an identity

$$
x_{2}^{2} p+x_{1}^{2} q \equiv l f
$$

where l is a linear combination of $x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, y_{0}, y_{1}, y_{2}$. If $x_{2}^{2} p$ and $x_{1}^{2} q$ belong to different eigenspaces of the group action then the above identity splits into two, and each of $x_{2}^{2} p$ and $x_{1}^{2} q$ is separately divisible by f, which gives an easy contradiction.

Write $p=p_{i}$ to indicate that p belongs to the i th eigenspace of the group action. Since the relation g provided by Proposition 3.2 is invariant, I can assume $p=p_{0}$ and $q=q_{2}$, and the identity is

$$
x_{2}^{2} p_{0}+x_{1}^{2} q_{2} \equiv\left(a x_{2}^{2}+b y_{1}\right) f, \quad \text { or } \quad x_{2}^{2}\left(p_{0}-a f\right)+x_{1}^{2} q_{2} \equiv b y_{1} f
$$

Now $b \neq 0$ for otherwise one gets a contradiction to Lemma 3.3 as above. But this relation implies that the coefficient a_{0} of $x_{1} x_{2}\left(y_{0}^{2}-y_{1} y_{2}\right)$ in f is zero (compare Corollary 3.6), and that the coefficients of y_{0}^{3} in p_{0} vanishes. It
follows from this that the subspace of F defined by $f=p_{0}=q_{2}$ contains the fixed points

$$
\left\{t=x_{1}=y_{1}=y_{2}=0\right\} \quad \text { and } \quad\left\{t=x_{2}=y_{1}=y_{2}=0\right\}
$$

of the $\mathbb{Z} / 3$ action. But one sees easily using Lemma 3.5 that in this case the equations $f=p_{0}=q_{2}=0$ define \widetilde{Y} exactly in a neighbourhood of either $x_{1}=0$ or $x_{2}=0$. Thus the group action on \widetilde{Y} has a fixed point, which is a contradiction.
$r=3$ splits into several cases.
Case (iii). $M_{p}=3 Q_{0}, M_{q}=3 Q_{\infty}$, and again assume that $p=p_{0}$. We get a relation

$$
x_{1}^{3} q+x_{2}^{3} p \equiv\left(a x_{1}^{3}+b x_{2}^{3}+c x_{1} y_{2}+d x_{2} y_{1}\right) f
$$

or

$$
x_{1}^{3}(q-a f)+x_{2}^{3}(p-b f) \equiv\left(c x_{1} y_{2}+d x_{2} y_{1}\right) f
$$

not both c and d vanish by Lemma 3.3. But now Corollary 3.6 implies that at least one of $x_{1}^{2} x_{2} y_{1}^{3}$ or $x_{1} x_{2}^{2} y_{2}^{3}$ appears on the right hand side with nonzero coefficient, which is a contradiction.

Case (iv). $M_{p}=Q_{-1}+Q_{-\omega}+Q_{-\omega^{2}}, M_{q}=2 Q_{0}+Q_{\infty}$, and $p=p_{0}$. In this case one gets the identity

$$
x_{1}^{2} x_{2}(p-a f)+\left(x_{1}^{3}+x_{2}^{3}\right) q \equiv\left(b x_{1} y_{0}+c x_{2} y_{2}\right) f ;
$$

now if $b \neq 0$ Corollary 3.6 implies that the right hand side contains $x_{1} x_{2}^{2} y_{0} y_{1}^{2}$ with nonzero coefficient, which is a contradiction. Hence $b=0, c \neq 0$; but this implies that the coefficient of $x_{1} x_{2}\left(y_{0}^{2}-y_{1} y_{2}\right)$ in f vanishes, as well as the coefficient of y_{0}^{3} in p. This implies that both f and p vanish at the fixed points

$$
\left\{t=x_{1}=y_{1}=y_{2}=0\right\} \quad \text { and } \quad\left\{t=x_{2}=y_{1}=y_{2}=0\right\}
$$

whereas $f=p=0$ defines \tilde{Y} exactly in a neighbourhood of both $x_{1}=0$ and $x_{2}=0$.

Case (v). $M_{p}=Q_{-1}+Q_{-\omega}+Q_{-\omega^{2}}, M_{q}=2 Q_{0}+Q_{\infty}$, and $q=q_{0}$. In this case one gets the identity

$$
x_{1}^{2} x_{2} p+x_{1}^{3}(q-a f)+x_{2}^{3}(q-b f) \equiv\left(c x_{1} y_{2}+d x_{2} y_{1}\right) f ;
$$

if $c=d=0$ then $q-b f$ is divisible by x_{1}, contradicting Lemma 3.3. But if $c \neq 0$ then the right hand side contains $x_{1}^{3} y_{2}^{3}$ with nonzero coefficient by Corollary 3.6. Thus $c=0, d \neq 0$. But then the coefficient of $x_{1} x_{2}\left(y_{0}^{2}-y_{1} y_{2}\right)$ in f is zero, and again, f and p both vanish on fixed points of the group acion, and define \widetilde{Y} is a neighbourhood of them.

This completes the proof of Lemma 3.7.

References

[1] Yoichi Miyaoka, Tricanonical maps of numerical Godeaux surfaces, Invent. Math. 34 (1976) 99-111
[2] Enrico Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973) 447-495
[3] Enrico Bombieri, The pluricanonical map of a complex surface, in Several Complex Variables, I (Maryland, 1970), Springer LNM 155 (1970), pp. 3587
[4] C.P. Ramanujam, Remarks on the Kodaira vanishing theorem, J. Indian Math. Soc. 36 (1972) 41-51
[5] C.P. Ramanujam, Supplement to [4], same J. 38 (1974) 121-124
[6] M. Reid, Bogomolov's theorem $c_{1}^{2} \leq 4 c_{2}$, in International Symposium on Algebraic Geometry (Kyoto, 1977), Kinokuniya (1978), pp. 623-642

More recent references:

[7] Frans Oort and Chris Peters, A Campedelli surface with torsion group $\mathbb{Z} / 2$, Nederl. Akad. Wetensch. Indag. Math. 43 (1981) 399-407
[8] Rebecca Barlow, A simply connected surface of general type with $p_{g}=0$, Invent. Math. 79 (1985) 293-301
[9] Rebecca Barlow, Some new surfaces with $p_{g}=0$, Duke Math. J. 51 (1984) 889-904
[10] Miles Reid, Parallel unprojection equations for $\mathbb{Z} / 3$ Godeaux surfaces, Notes, 9 pp. (2013), available from my website
www. warwick.ac.uk/~masda/codim4/God3.pdf

Final remarks (2015).

Correction to introductory remarks

My reference on p. 1 to [7] is not correct. The papers of Rebecca Barlow [8], [9] contain the first constructions of simply connected Godeaux surfaces and Godeaux surfaces with Tors $=\pi_{1}=\mathbb{Z} / 2$.

Remark on Theorem 2.1

The general surface $Y(8,8) \subset \mathbb{P}(1,1,4,4,4)$ is a surface with $K_{Y}=\mathcal{O}(A)$ with the same invariants $p_{g}=3, K^{2}=4$ and deforms to a surface with $\left|K_{Y}\right|$ free. It can be given a free $\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$ group action. However, it has 4 cyclic quotient singularities of type $\frac{1}{4}(1,1)$, and these do not deform away with the group action.

Remark on construction of Section 3

One constructs the main family of surfaces of Section 3 much more easily by unprojection methods, which give them as section of a large key variety. This trick does not avoid the need for the proof of irreducibility of the moduli space. For details, see [10]. The main idea is to change coordinates from the eigencoordinates x_{i}, y_{i}, z_{i} of the 1977 Tokyo paper to permutation coordinates by a cyclotomic coordinate change

$$
y_{i} \mapsto y_{0}+\omega^{i} y_{1}+\omega^{2 i} y_{2} \quad \text { (say) }
$$

after which the z_{i} become parallel unprojection coordinates. The key variety is a standard parallel unprojection from the hypersurface

$$
y_{0} y_{1} y_{2}=s x_{0} x_{1} x_{2}+r_{0} x_{1} x_{2} y_{0}+r_{1} x_{0} x_{2} y_{1}+r_{2} x_{0} x_{1} y_{2}
$$

contained in the product of 3 codimension 2 ideals $\left(x_{i}, y_{i}\right)$.

[^0]: ${ }^{1}$ J. Fac. of Science, Univ. of Tokyo, Sec. IA, $\mathbf{2 5}: 1$ (March 1978) 75-92
 ${ }^{2}$ See the end for some updates and corrections.

